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Abstract—Hyperdimensional Computing (HDC) is introduced as a
promising solution for robust and efficient learning on embedded devices
with limited resources. Since HDC often runs in a distributed way, edge
devices need to share their model with other parties. However, the learned
model by itself may expose information of the train data, resulting in
a serious privacy concern. This paper is the first effort to show the
possibility of a model inversion attack in HDC and provide solutions to
overcome the challenges. HDC performs learning tasks after mapping
data points into high-dimensional space. We first show the vulnerability
of the HDC encoding module by introducing techniques that decode the
high-dimensional data back to the original space. Then, we exploit this
invertibility to extract the HDC model’s information and reconstruct the
train data just by accessing the model. To address the privacy challenges,
we propose two iterative techniques which scrutinize HDC model from
a privacy perspective: (i) intelligent noise injection that identifies and
randomizes insignificant features of the model in the original space, and
(ii) model quantization that removes model’s recoverable information
while teaches the model iteratively to compensate the possible quality
loss. Our evaluation over a wide range of classification problems indicates
that our solution reduces the information leakage by 92% (66%) while
having less than 5% (3%) impact on the learning accuracy.

I. INTRODUCTION

Many applications run machine learning algorithms to assimilate
the data collected in the swarm of devices on the Internet of Things
(IoT). Sending all the data to the cloud for processing is not scalable,
cannot guarantee a real-time response, and is often not desirable
due to privacy and security concerns [1]–[6]. Much of IoT data
processing will need to run at least partly on devices at the edge [7]–
[10]. However, the high computational complexity and memory
requirement of existing Neural Networks (DNN) hinder usability to
a wide variety of real-life embedded applications where the device
resources and power budget is limited [11]–[14]. Therefore, we need
alternative learning methods to train on the less-powerful IoT devices
while ensuring model accuracy and privacy.

Hyperdimensional Computing (HDC) is introduced as a promising
solution for robust and efficient learning. HDC is motivated by the
understanding that the human brain operates on high-dimensional
representations of data originated from the large size of brain cir-
cuits [15]. It thereby models the human memory using points of a
high-dimensional space, that is, with hypervectors. HDC performs a
learning task after mapping data into high-dimensional space. This
encoding is performed using a set of pre-generated base vectors. HDC
is well suited to address several learning tasks in IoT systems as: (i)
HDC is computationally efficient and amenable to hardware level
optimization [16]–[18], (ii) it is a computational paradigm that can
be applied to a wide range of learning and cognitive problems [19]–
[21], and (iii) it provides strong robustness to noise – a key strength
for IoT systems [20], [22].

Although HDC enables ultra-efficient learning, the lack of trust-
worthy learning limits its practical application in real-world IoT
systems. Privacy is one of the key challenges of machine learning
algorithms as the trained model may expose the information of the
training data. In HDC, the privacy is a bigger concern as: (i) HDC

has a transparent model and often runs in a distributed system where
devices need to share their trained model to other parties, (ii) the HDC
encoding module is invertible, meaning that the high-dimensional
data can be decoded back to original space just by accessing the base
vectors (encoding key). Unfortunately, these bases need to be shared
by all parties involved in the training or inference process. Prior
work tried to make address trustworthiness challenges in HDC. For
example, work in [23] introduced the first adverserial attack on the
HDC model. Work in [24] exploited multi-party computation (MPC)
to enable secure collaborated learning by assigning a private key (base
hypervector) to each user. Work in [25] securitized the HDC from a
differential privacy perspective by adding noise to encoded samples
during training and inference. However, these approaches assumed
the trained model does not expose any information on the enclosed
dataset.

This paper is the first effort toward the possible model inversion
attack in HDC. We propose a framework that not only checks the
existence of an inference data in the train set, but also reconstructs
the train data only by accessing the HDC trained model. We also
propose solutions to overcome privacy challenges. We summarize
our main contributions here:
• We proposed PRID, a novel framework to enhance HDC privacy

against model inversion attack.We show the vulnerability of HDC
encoding by introducing analytical and learning-based techniques
to decode the high-dimensional data back to the original space.

• PRID exploits the invertibility of the encoding module to recon-
struct and estimate data points used for model training. PRID first
decodes the HDC model back to original space and gets a rough
estimation of train data used for model training. For a given query
data, PRID reconstructs a train data by identifying query features,
e.g., pixels, that are possibly used for model training. Then, PRID
reconstructs new data by replacing the non-used query features
with features from the decoded model. An iterative process will
reconstruct train data that has been used for model learning.

• We propose two iterative techniques to scrutinize HDC model
against model inversion attack: (i) intelligent noise injection that
identifies and randomizes insignificant model features in original
space, and (ii) model quantization that degrades the HDC decoding
capability in the HDC model. PRID integrates both approaches
with an iterative learning framework that compensates for the
possible quality loss caused by noise injection or quantization.

We evaluate PRID on a wide range of classification problems and
observe that PRID almost to eliminate data exposure, e.g., it reduces
the information leakage by 92% (66%) while having less than 5%
(3%) impact on the learning accuracy. Our code is available open-
source1

II. PRELIMINARY

A. Hyperdimensional Learning

Hyperdimensional computing (HDC) consists of three modules:
encoding, training, and associative search.

1https://gitlab.com/biaslab/pridhd978-1-6654-3274-0/21/$31.00 ©2021 IEEE
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Encoding: is the first operation involved in HDC. The goal of
the encoding module is to map data in a space that data points can
be classified using a simpler classifier. Depending on data type, prior
work introduced different encoding modules [24], [26], [27]. Here, we
consider the state-of-the-art encoding method for feature vector [24].
Let us consider an encoding function that maps a feature vector
~F = {f1, f2, . . . , fn}, with n features (fi ∈ R) to a hypervector
~H = {h1, h2, . . . , hD} with D dimensions (hi ∈ R). We generate
each dimension of encoded data by calculating: ~H =

∑n−1
k=0 fk · ~Bk,

where ~Bk ∈ {−1,+1}D are randomly generated base hypervectors.
Due to nature of random generation, these hypervectors are nearly
orthogonal: δ( ~Bk1 , ~Bk2) ' 0, where δ denotes the cosine similarity.
Thus, each base hypervector can retain the spatial or temporal
location of each feature in an input. Instead of using actual feature
values, prior work [26] performed vector quantization to represent
feature values using highly correlated hypervectors. However, this
comes at the penalty of quality loss. In HDC, the base hypervectors
{ ~B1, ~B2, · · · , ~Bn} are are generated once in offline and then can be
used for rest of the classification.

Training: of HDC starts with accumulating all encoded hypervec-
tors corresponding to each class. The result will be k hypervectors
with D dimensions, where k is the number of classes. Assuming
there are J inputs having label l: ~Cl =

∑J
j
~Hl
j . HDC also supports

iterative training [24], but that comes at the cost of higher training
time and energy.

Inference: of HDC starts by encoding the test data into high-
dimensional space using the same encoding module used for training.
The encoded data is called query hypervector ~H. Next, we compare
the similarity (δ) of ~H and all class hypervectors to find a class with
the highest similarity.

B. Privacy in HDC

The existing HDC learning systems have major privacy and se-
curity challenges. Work in [24] introduced SecureHD as a frame-
work for secure collaborative learning in high-dimensional space.
SecureHD considers a scenario that cloud is untrusted and then
exploits multi-party computation (MPC) to generate a private base
hypervector for each client. Work in [23] designed the first adversarial
attack for HDC. Work in [25] exploits the well-known noise injection
method to enable differential privacy in high-dimensional space. All
existing solutions assumed the trained model does not expose any
information on the enclosed dataset. In contrast, this paper is the first
effort toward securitizing the HDC model against model inversion
attack. Since HDC often works in federated learning, users need
to share their model with other parties. This can possibly reveal
the information of train data points that have been used for model
learning. In this work, we show the possibility of a model inversion
attack and proposed general solutions to securitize the HDC model.

III. HDC MODEL INVERSION ATTACK

In HDC, the encoding module is invertible, meaning that the
encoded hypervector can be decoded back to the original space.
In fact, the HDC encoding module is secure unless one has access
to the base hypervectors used for encoding [24]. This invertibility
can provide the following advantages: (i) transparent model for
reasoning about the decision made by the model, (ii) secure storage
to store the encoded data in the cloud [24]. However, this invertibility
creates several privacy challenges as it can be used to extract useful
information from the model. Model inversion attack is one of the
significant privacy challenges in learning systems [28], [29]. This
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Fig. 1. Data decoding techniques over original and noisy data.

attack extracts the information of the train data by accessing the
model.

A. Data Recovery in HDC

Previous work has introduced a data recovering method which
we refer to as analytical data decoding [24]. Here, we introduce
a learning-based method to decode high-dimensional data back to
original space.

Analytical Data Decoding: Let us assume ~F is a feature vector
which has been encoded to high-dimensional space ( ~H) using base
hypervectors ~B. PRID decodes each feature in the original space
using: fi ≈

~BT
i · ~H
D

. The same equation can be used to recover the
first estimation of the feature vector: ~F (1) = {f (1)

1 , f
(1)
2 , · · · , f (1)

n }.
To find better estimation of the feature, we perform an iterative data
decoding that reduces the noise of the feature vector. This iterative
approach encodes the recovered data back to high-dimensional space
( ~H(1)) and subtracts it from the encoded data to create an error
hypervector: ~Et+1 = ~Ht − ~Ht+1. The error hypervector will be
decoded back to original space ( ~E(1)) and added by the first feature
vector estimation (~F t+1 = ~F t + λ~Et), where λ is a small constant
to ensure convergence. PRID continues this iterative process until
generating a feature good estimation of feature vector with less
variance.

Learning-based Data Decoding: We also introduce a learning-
based approach to extract information from high-dimensional space.
We observe the encoding can be reorganized as a matrix multiplica-
tion, and thus decoding can be tackled as a linear regression problem,
which can be solved with multiple approaches, e.g. using least squares
regression. In this experiment, we exploit a neural network structure
with a single hidden layer performing a regression task. The network
uses n neurons in the hidden layer, which is equal to the number of
features in the original space. The input to the neural network is the
Base hypervectors ({B1, · · · , Bk}), and the output is the encoded
data ~H. By training the network, PRID finds the best weights that
generate the encoded hypervector given the base hypervectors. The
trained neural network weights will be our decoded features.

Figure 1 visually compares analytical and learning-based data
decoding over a few samples. Our evaluation shows that our learning-
based solution is significantly more accurate in decoding data back
to the original space. For example, for MNIST data points with
20% Gaussian noise (µ = 0, σ2 = 1), the analytical model
provides 14.3dB Peak signal-to-noise ratio (PSNR) while learning-
based model achieves PSNR of 29.1dB. Recent work in [25] used an
analytical model to show the differential privacy of the HDC model.
The paper claimed that the decoded image from high-dimensional
space provides very poor PSNR when adding a certain amount of
noise to data. In contrast, our learning-based model can accurately
recover such noisy encoded data. In fact, to ensure differential
privacy, we require much larger noise that can come with significant
overhead on the accuracy. Differential privacy is our of this paper
scope, so we do not further explore it.



B. Train Data Reconstruction

The proposed data recovery approaches can be used to decode
class hypervectors back to the original space. The decoding reveals
the general shape of train data used for model training (e.g., shape
of zero digits on MNIST). However, it is not clear if it reveals the
information of train data used for model generation. In this section,
we propose PRID that not only checks the membership of query data
in a train set, but also reconstructs a good estimation of train data that
has been used for model generation. Let us assume {~T1, ~T2, · · · , ~Tp}
are p training data point in original space. HDC maps train data into
high-dimensional space { ~HT 1, ~HT 2, · · · , ~HT p} and combines them
to generate a model. For a classification problem with k classes,
HDC generates k class hypervectors {~C1, ~C2, · · · , ~Ck}. We check the
availability of a data point in a training set. For a given inference
data, ~F = {f1, f2, · · · , fn}, PRID first encodes the query data into
high-dimensional space ( ~H) using the same encoder used for training.
Thereafter, we compute the cosine similarity (δ) of ~H and all class
hypervectors to find a class with the highest similarity: δmax = δl =
δ( ~H, ~Cl). For example, δl = 80% indicates the there might be data
points in training data that have high overlap with the query data.
The next and more important question is to see if it is possible to
recover the similar data points that have been used to train such a
model. Here, we introduce two techniques to reconstruct data with
high similarity to a query that has been used for training.

1) Feature Replacement: Figure 2 shows an overview of PRID
data reconstruction. In the first step, PRID checks the existence of
each element, e.g., feature, of the query data in the model (Figure 2a).
To this end, PRID removes one of the features from the query
data and encodes the new masked data into high-dimensional space
(Figure 2b). For example, when we remove ith feature from the
query data, {f1, · · · , fi−1, 0, fi+1, · · · , fn}, the encoded hypervec-
tor represents as ~H′i. We check the similarity of new encoded data
with ~Cl, which is a class that the query belong to: δil = δ(~Cl, ~Hi).
If δil ≥ δmax − σ, it indicates that the ith feature may exists in
some training samples that used for ~Cl model learning (Figure 2c).
However, δil ≤ δmax − σ indicates that the masked feature does not
likely belong to any training sample. Note that σ2 is variance over
{δ1, δ2, · · · , δn}, and is considered as a similarity margin. PRID
performs the same experiments over all features by removing them
one-by-one from the original space and checking their existence
on the model. This process selects all features of query data that
are likely belong to training samples. For all other features, PRID
replaces them with the corresponding features of the decoded class
hypervector. As shown by Figure 2b, the class features can be
computed by decoding the selected class back to the original space
(~FC = {fC

n · · · , fC
1 }). This results in generating a reconstructed

data, ~R vector, which has combination of the query and class features.

~R = 〈rn, · · · , r1〉 where ri =

{
fi if δj > δ − σ2

fc
i otherwise.

(1)

where σ2 is variance over {δ1, δ2, · · · , δn}. PRID performs an
iterative method to improve the quality of data reconstruction. PRID
encodes the reconstructed data, ~R, to high-dimensional space, H(1),
and compute its similarity to a corresponding class hypervector that
a query belongs to, δ(1)max = δ

(1)
l = δ(~Cl, ~H(1)). Then, PRID checks

the existence of each feature of ~R in the model using the Equation 1.
For features that do not exist in the model (result in a reduction in
the similarity value), PRID replaces them with the inference data or
class features. The replacement depends if the selected feature already
corresponds to a query data or the class. If the selected features
belong to the class, it will be replaced with the query features;
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Fig. 2. PRID data reconstruction: feature replacement.
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the closest train data to reconstructed data.
otherwise, it will be replaced by the class features. After performing a
few iterations of feature adjustment, PRID finds a reconstructed data
with very high similarity to the training sample used for learning.

2) Dimension Replacement: Instead of replacing features in orig-
inal space, we propose an approach that reconstructs train data by
replacing high-dimensional features. For a query data F , and encoded
hypervector ~H = {h1, · · · , hD}, we first find a class with the highest
similarity: δl = δ(~Cl, ~Hi). Then, we remove a single dimension
from the encoded query data and check its similarity with the
corresponding class hypervector (~Cl). For example, when removing
ith dimension, we can compute the similarity of a new encoded
data with selected class hypervector: δmax = δil = δil (~Cl, ~Hi). The
term ‘δil ≥ δmax − σ’ suggests that the ith feature exists in the
model, while δil ≤ δmax − σ shows that the ith dimension does not
likely belong to any train samples. For every dimension that does
not increase the similarity, we replace those dimensions with the
class dimensions. This results in generating a new high-dimensional
vector that has a combination of inference and class dimensions.
Finally, we decode the combined high-dimensional vector back to the
original space. Similar to Section III-B1, PRID improves the quality
of the reconstructed data by performing an iterative approach. In
each iteration, PRID encodes the new reconstructed data into high-
dimensional space and finds dimensions that do not belong to the
corresponding class hypervector. Finally, PRID reconstruct new data
by replacing those dimensions. This process continues until finding
a hypervector that the majority of dimensions have a high impact on
the similarity.

Figure 3 visually shows a query sample, decoded class hypervector,
and the reconstructed data using dimension replacement. To see the
effectiveness of our approach, we check the similarity of inference
and reconstructed data with all training data in original space,
{T1, T2, · · · , Tp}. Figure 3a shows the distribution of Mean Square
Error (MSE) of train data with a query and reconstructed data. The
results are reported for different iterations. Our evaluation shows
that reconstructed data provides lower MSE as compared to query,
suggesting that PRID is capable of extracting information from the
trained model. Figure 3b also shows the best train data that matches
with the reconstructed data. Our results indicates a high similarity of
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this data to our reconstructed data.

IV. PRID PRIVACY PRESERVING

We propose two techniques to increase PRID privacy against model
inversion attack. Both methods aim to remove the shared information
from the model to ensure privacy while having no or minimal affect
on the accuracy.

A. Iterative & Intelligent Noise Injection

To improve the privacy, we propose the idea of intelligent
noise injection that securtizes the HDC model by randomizing the
insignificant model information. Figure 4 shows the overview of our
framework, working in the following steps:
(i) Initial model training: it creates an initial model by ac-
cumulating all encoded data points corresponding to each class,
{C1, C2, · · · , Ck}.
(ii) Model decoding: PRID decodes the generated model back
to original space using the learning-based method introduced in
Section III-A, {~FC

1 , ~F
C
2 , · · · , ~FC

k }, where ~FC
i ∈ Rn.

(iii) Noise Injection: PRID identifies the insignificant class elements
in hyperdimensional space that store common information. These
dimensions have minor impact on the classification accuracy. As
Figure 4a shows, these features are obtained by computing the
variance over different class features in the adjusted model. PRID
replaces those features with a random noise that has the same
distribution as other features.
(iv) Model Adjustment: the noise injection can possibly result in
a quality loss. PRID compensates this loss by retraining the noisy
model over the train data (Figure 4c). PRID checks the similarity
of an encoded train data with the noisy HDC model. If the model
mispredicts data (which corresponding to label l) as label l′, the
model updates as:

~Cl = ~Cl + α ~H ~Cl′ = ~Cl′ − α ~H (2)

where α is a learning rate. This process continues over all train data
to create a bigger gap between the classes.
(v) Iterative Learning: PRID continues the noise injection (Step III)
and model adjustment (step II) until the HDC accuracy stabilizes
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Fig. 6. (a) Decoded class hypervector before/after noise injection and
quantization, (b) face detection with quantization.

during few consecutive iterations. Figure 5 shows the impact of
iterative noise injection on the privacy and accuracy of the HDC
model. In the first iteration, PRID has a deficient level of privacy
as the HDC model reveals the class hypervectors. Noise injection
improves model privacy by randomizing the information stored in
the class hypervectors (40% in our example). The class hypervectors
become more blurry after each retraining iteration, resulting in a
higher privacy (Figure 5a). The retraining also compensates for the
quality loss caused by noise injection (Figure 5b).

B. Iterative Model Quantization

In HDC, the class hypervectors are represented using 32-bit values.
PRID introduces model quantization as a practical approach to reduce
the precision of each class dimension to n-bits (n < 32). Quan-
tization reduces the chance of decoding the high-dimensional data
back to original space, enhancing the model privacy. Our framework
integrates the quantization as a part of an iterative training to: (i)
teach the HDC model to work with the quantization constraints, and
(ii) further separate the class hypervectors and improve the model
privacy. Our model quantization implements in the following steps:
(i) Initial training: the initial training is performed using the same
method as Step I in Section IV-A. (ii) Model quantization: PRID
quantizes the trained model and stores two copies of the HDC models:
full precision and quantized models (n-bit precision).
(iii) Model adjustment: PRID checks the similarity of the encoded
data with the quantized model. For each misprediction, PRID uses
Equation 2 to only update the full precision model. The update on
the quantized model can result in a divergence since the quantized
model does not have enough precision for an update.
(iii) Model Update: After updating the model over all training
data (or batch of data), PRID quantizes the full-precision model
and replaces it with the quantized model. Figure 6a shows the
decoded class hypervectors after different model quantization. The
result shows that quantization improves model privacy by lowering
the amount of information stored in the model. However, the naive
model quantization can result in significant quality loss.
(iv) Iterative learning: To compensate for the possible quality
loss, PRID iteratively continues the above steps until the accuracy
stabilizes over a few consecutive iterations. Figure 6b shows the face
detection accuracy (the probability windows) after model quantiza-
tion. Our evaluation shows that the quality of face detection decreases
by the quantization. For example, 1-bit (2-bit) model quantization
results in 4.8% (3.3%) quality loss as compared to full precision
model. The level of quantization affects both accuracy and privacy.
Using extreme quantization (n = 1), PRID has the highest level
of privacy while it also has the highest quality loss during the
classification (Section V-D).



TABLE I
DATASETS (n: FEATURE SIZE, k: NUMBER OF CLASSES).

n K
Train
Size

Test
Size Description/State-of-the-art Model

SPEECH 617 26 6,238 1,559 Voice Recognition/DNN [31]
MNIST 784 10 50,000 10,000 Handwritten digits/DNN [32]
FACE 608 2 522,441 2,494 Face recognition/Adaboost [33]

ACTIVITY 75 5 611,142 101,582 Activity recognition(IMU)/DNN [30]
EXTRA 225 4 146,869 16,343 Phone position recognition/AdaBoost [34]

UCIHAR 561 12 6,213 1,554 Activity recognition(Mobile)/DNN [35]

V. EVALUATION

We verified PRID functionality using Python implementation.
We also provide open-source Python implementation. The tested
benchmarks range from relatively small datasets collected in a small
IoT network, e.g., ACTIVITY [30], to a large dataset that includes
hundreds of thousands of images of facial and non-facial data. Table I
also lists the model for each dataset. Comparing the accuracy results,
we observe that PRID provides comparable accuracy to state-of-the-
art algorithms (only 0.2% lower average accuracy).

We define information leakage by computing the similarity of
reconstructed data with the training data set. For a query ~Q and
reconstructed data ~R, it defines as:
• Minimum extracted information from a model (∆Q), which can be

computed as the average similarity between an unbiased constant
vector G = (1, 1, . . . , 1) with the entire training set.

• Maximum extracted information from the model (∆T ). This can
be computed by: (i) finding top-k values in train data (original
space) with the highest similarity to the query (S), (ii) computing
the average similarity of those values from the entire train set.

• Reconstructed information extraction from a model (∆R), which
can be computed by the average similarity of reconstructed data
from the entire train set.

Max

∆𝑹 ∆𝑻∆𝑸

∆𝑹 − ∆𝑸

∆𝑻 − ∆𝑸

Min Reconstructed
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𝟏

𝑷
×

𝟏
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∆𝑻 − ∆𝑸
Information 

Leakage

Information Extraction

As above equation shows, the reconstructed data extracts a value
between the minimum (∆Q) and the maximum possible ∆T infor-
mation extraction. A large ∆ indicates that the reconstructed data
has a higher similarity to the train set; thus, the model has high
information leakage. In contrast, smaller ∆ shows the closeness of
the query and reconstructed data.

A. Privacy Attack in HDC

Figure 7 compares the effectiveness of two proposed data recon-
struction methods: feature and dimension replacement. The results
are reported using both analytical and learning-based data decod-
ing, introduced in Section III-A. Our evaluation shows that our
learning-based solution always outperforms the analytical approach
in terms of the quality of data decoding. Our results also indicate
that feature-based reconstruction provides higher information leakage
(∆) compared to dimension-based. In contrast, dimension-based
reconstruction provides higher PSNR. Depending on the definition
of privacy, both these approaches can effectively extract information
about the train set just by accessing the model. To extract maximum
information from the train set, we combined both feature-based and
dimension-based techniques. In every iteration, PRID first reconstruct
an input using feature-based while in the next iteration PRID uses
dimension-based reconstruction. As Figure 7 shows, this approach
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Fig. 7. Privacy using different data reconstructions.

Fig. 8. Quality loss and leakage in different dimensionality.

reveals maximum information from train data, results in maximum
privacy concerns. For the rest of the evaluation, we consider this
combinational data reconstruction to attack the model privacy.

B. Dimensionality & Privacy-Accuracy

Figure 8 shows PRID data reconstruction and the quality loss
using hypervectors with different dimensionality. The quality loss
and information leakage are reported compared to PRID using
D = 10k dimensions. A hypervector with higher dimensions can
store more useful information; thus, it provides a higher chance for
data reconstruction. Although reducing dimensionality is a practical
approach to degrade the data reconstruction rate, aggressive dimen-
sion reduction can result in possible quality loss. For example, our
evaluation indicates that PRID using 2k (1k) dimensionality reduces
the information leakage to 81% (62%) while resulting in less than
2.1% and 2.4% quality loss on classification accuracy.

C. PRID Noise Injection

Figure 9 shows the impact of noise injection on PRID accuracy
and privacy. The results are reported when injecting noise into a
different portion of features on the decoded model. For example,
20% noise indicates that we randomize 20% of the decoded class
features with the lowest variance. In PRID, there is a trade-off
between the model accuracy and information leakage. Adding noise
degrades the classification accuracy while it improves the model
privacy by vanishing the actual information from the model. Our
evaluation shows that HDC provides high robustness to the noise
injection, because (i) PRID only adds noise to insignificant features
that have minor impact on the classification, (ii) HDC has inherent
robustness to noise and failure in dimensions, and (iii) thanks to our
retraining method that compensate for the quality loss. For example,
randomizing 20% and 60% features only results in 3.5% and 9.6%
average quality loss. Note that without retraining, these injected noise
values could result in 12.7% and 48.1% quality loss, which is not
acceptable in practice. Increasing the level of noise features improves
PRID privacy by making decoding nearly impossible. Our results
indicate that using 20% and 60% noisy features improves PRID
privacy by 20.9% and 43.3%, respectively.

D. PRID Model Qunatization

The privacy of HDC against model inversion attack directly relates
to the quantization level. The quantization reduces the amount of
useful information stored in each class hypervector. Figure 10 shows
the information leakage (∆) of the HDC model when the level of
quantization varies from 1-bit to 32-bits. Our evaluation shows that
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model quantization to 1-bit and 4-bits reduces the information leakage
to 86.9% and 51.2%, respectively. This indicates that the quantized
model has poor decoding, which does not help reconstruct training
data. As explained in Section IV-B, the naive quantization can result
in significant quality loss in HDC. However, our proposed iterative
framework ensures that the model learns to work with quantization
constraints with minimal loss. Our evaluation shows that PRID
provides maximum accuracy using 4-bit quantization. Reducing the
quantization level to 1-bit (4-bit) results in an average of 4.8% and
2.2% quality loss.

E. Hybrid: Quantization & Noise Injection

To enhance the level of privacy, we combine the noise injection and
quantization method. During iterative training, PRID stores both full-
precision and quantized model. In each iteration of model adjustment,
PRID injects noise to the full-precision model. During iterative
training, PRID checks the similarity with the quantized model while
updates the full precision model for each misprediction. After going
through all train data (or batch of data), PRID updates both models
by quantizing the noisy model. Our framework iteratively retrains
the model to teach the HDC model to work with noise injection and
quantization constraints. Table II shows the information leakage that
each approach provides in different quality loss. Our result indicates
that, at the same level of accuracy, the combined approach results in
minimum information leakage.

VI. CONCLUSION

In this paper, we first show the possibility of a model inversion
attack in hyperdimensional computing. We exploit invertiblity of
the HDC encoding module to expose the HDC model and extract
useful information from it. We propose two iterative techniques which
scrutinize HDC model from a privacy perspective: (i) intelligent
noise injection that identifies and randomizes insignificant features
of the model in the original space, and (ii) model quantization that
removes model’s recoverable information while teaches the model
iteratively to compensate the possible quality loss. We evaluate
PRID effectiveness over a wide range of classification problems. Our
framework enables HDC to provide high accuracy while minimizing
the information leakage.
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INFORMATION LEAKAGE IN DIFFERENT QUALITY LOSS.
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Combined 19% 35% 53% 66% 92%
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