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Abstract—Machine learning (ML) algorithms are key enablers
to effectively assimilate and extract information from many
generated data in the Internet of Things. However, running ML
algorithms often results in extremely slow processing speed and
high energy consumption. To achieve real-time performance with
high energy efficiency and robustness, we proposed RegHD, the
first regression solution based on Hyperdimensional computing.
RegHD redesign a regression algorithm using strategies that more
closely model the ultimate efficient learning machine: the human
brain. RegHD performs regression after mapping data points
into high-dimensional space using similarity preserving encoding.
Due to the encoder’s non-linearity, RegHD learns a regression
model in an efficient and linear way. RegHD creates two set of
models: Input Model to cluster data points with high similarity,
and Regression Model to generate a regression model for each
clustered data. During prediction, RegHD computes the output
value by the weighted accumulation of all regression models, con-
sidering the model confidence obtained during similarity search.
To improve RegHD efficiency, we also proposed a framework that
enables RegHD model quantization while having no impact on the
learning accuracy. Our evaluation shows that RegHD provides
5.6× and 12.3× (2.9× and 4.2×) faster and energy efficient
training (inference) as compared to state-of-the-art regression
algorithms, while providing similar quality of learning.

I. INTRODUCTION

Internet of Things generates a large amount of raw data
that could be entirely meaningless unless they process by
Machine Learning (ML) algorithms [1], [2]. Regression is the
key learning algorithm widely used for prediction, forecasting,
and causal relationships between variables. Besides, regression
is the main building block to enable accurate reinforcement
learning. However, running machine learning (ML) algorithms
often results in extremely slow processing speed and high
energy consumption on traditional systems, or needs a large
cluster of application-specific integrated chips (ASIC), e.g.,
Google TPU [3]–[5], and emerging hardware [6]. In addition,
ML algorithms in the training phase have very high sensitivity
to noise and failure in the hardware [7]–[10].

The human brain can do much of these learning effort-
lessly [11]–[15]. Hyperdimensional (HD) computing is intro-
duced as an alternative computational model mimicking “the
human brain” in the functionality level. HD computing is
based on the fact that the brain works with neural activities in
high-dimensional space. HD computing is well suited to ad-
dress learning tasks for IoT systems as: (i) it is computationally
efficient and highly parallel at heart to train and amenable to
hardware level optimization [16], [17], (ii) it offers an intuitive
and human-interpretable model [18], and (iii) it provides
strong robustness to noise – a key strength for IoT systems.
These features make HD computing a promising solution
for today’s embedded devices with limited storage, battery,
and resources. Several prior work look at the application of
HD computing for classification and clustering [19], [20].

To enable robust and real-time learning system, one possible
solution is to exploit HD computing for regression. However,
HD computing is an approximate computational model, and
naively extending classification to perform regression results in
low quality of learning and significant computational cost [18].

In this paper, we proposed RegHD, a novel approach
to perform regression in high-dimensional space. RegHD
fundamentally revisits HD algorithms in order to design a
novel and efficient approach for regression. RegHD preserves
parallelism, robustness, and efficiency of the HD-based system
while ensuring high quality of regression. The main contribu-
tions of the paper are listed below:
• To the best of our knowledge, RegHD is the first re-

gression algorithm based on hyperdimensional computing.
RegHD exploits similarity preserving encoding and run-
time clustering of data points in order to create multiple
regression models. During training, RegHD creates two set
of models: Input Model to cluster data points with high
similarity, and Regression Model to perform the prediction.
During prediction, RegHD computes the output value by the
weighted accumulation of all regression models, depending
on the similarity of input data to the cluster model.

• We propose a novel framework for quantizing the cluster
and regression model during the training phase. To reduce
the learning cost, RegHD reduces the precision of the
cluster model to binary hypervectors, enabling RegHD to
use hardware-friendly Hamming distance as a similarity
metric. RegHD exploit a similar framework for binarizing
data points and regression model with minimal impact on
the regression accuracy. This enables RegHD to enable real-
time learning by trading accuracy and efficiency.

• We evaluate RegHD efficiency on a wide range of regression
problems and compare the results with the state-of-the-art
regression algorithms. Our evaluation shows that RegHD
provides comparable accuracy to state-of-the-art learning
systems while provides significantly high computation ef-
ficiency. For example, RegHD trains 5.6× faster and is
12.3× more energy efficiency as compared to tested neural
networks.

II. RegHD: HYPERDIMENSIONAL REGRESSION

A. Overview
Figure 1 shows an overview of Hyperdimensional comput-

ing performing regression. The first step in HD computing
is to map each data points into high-dimensional space. The
mapping procedure is often referred to as encoding. During
regression, RegHD creates two set of models: Input Model to
cluster data points with high similarity, and Regression Model
to perform the prediction. Each model consists of multiple
vectors with the same dimensionality as encoded data points.
Each vector in the regression model corresponds to a cluster
of inputs aggregated in a cluster hypervector. During training,978-1-6654-3274-0/21/$31.00 ©2021 IEEE
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Fig. 1. RegHD overview performing regression.

RegHD first checks the similarity of a data point with the
input model. Depending on the search result, RegHD (i) adds
encoded data with the corresponding cluster vector with the
highest similarity, and (ii) updates corresponding vectors in
the regression model. The training performs iteratively over
training data until RegHD learns a suitable model. During
prediction, RegHD uses the same encoding module to map
each query data into high-dimensional space. RegHD checks
the similarity of the encoded data with the input model
and uses corresponding vectors in the regression model for
prediction. The prediction is a dot product between encoded
data and model hypervectors. In the rest of the section, we
explain the details of RegHD functionality in each step.

B. Encoding
HD computing uses different encoding methods depending

on data types [21], [22]. The encoded data should satisfy the
common-sense principle: data points that are different from
each other in the original space should also be different in
the HD space. For example, if a data point is completely
different from another one, the corresponding hypervectors
should be orthogonal in the HD space. Here, we show the
encoding module for a feature vector, which is one of the
complex data representations. In the feature vector, we do
not know the relation between different features; thus, the
encoding module should find out the importance of the features
and the relation between them. Assume an input vector (an
image, voice, etc.) in original space ~F = (f1, f2, · · · , fn)
and F ∈ Rn. The encoding module maps this vector into
high-dimensional vector, ~H = (h1, h2, · · · , hn) ∈ RD, where
D � n. The following equation shows an encoding method
that maps input vector into high-dimensional space:

hi = cos(~F · ~Bi + bi) sin(~F · ~Bi) (1)
where ~Bks are randomly chosen hence orthogonal base hyper-
vectors of dimension D ' 10k to retain the spatial or temporal
location of features in an input and bi ∼ U(0, 2π). That is,
~Bkj ∼ N (0, 1) and δ( ~Bk1 , ~Bk2) ' 0, where δ denotes the
cosine similarity.

C. Single-Model Regression
Let us assume the pairs of (x, y) as a sample of training

data points in the original space. The main goal of regression
is to learn the function between x and y, given all training data
points. For any given x, the trained model needs to correctly
predict y. Figure 2a shows RegHD functionality using single-
model regression. RegHD creates a model to perform this
prediction ( ~M). Initially, this model is a hypervector initialized
to all zero elements, ~M∈ {0}D. For every training data (x, y),
RegHD first encodes the input data into high-dimensional
space, ~S ∈ {−1,+1}D. The dot product operation between the
encoded input hypervector and the model predicts the output
value: ŷ = ~M. ~S, where ŷ is a scalar value. The difference of

the predicted value (ŷ) and the correct output (y) represents
RegHD prediction error. RegHD updates the model depending
on the error of each prediction as follows:

~M← ~M+ α(y − ~M. ~S)× ~S (2)

where α is a learning rate and E = y − ~M. ~S represents the
prediction error . The model update adds input data to the
model, depending on the prediction error.
RegHD creates a single-pass model by one time going

though all training data points and updating the model. How-
ever, this model often provides low accuracy as the last inputs
have a higher chance of modifying the model toward their de-
sired direction. To address this issue, RegHD performs iterative
learning where we look at training data points iterative and
update the model. The model retraining stops when RegHD
has minor changes on the model M during a few consecutive
iterations. During prediction phase, RegHD predict an output
value for a query ~X using the following steps: (i) first encode
data point into high-dimensional space ( ~Q) using the same
encoding module used during training, (ii) RegHD predicts
output value using: ŷ = ~Q. ~M

Figure 3a shows the regression accuracy during different
retraining iterations. Our evaluation indicates that improves the
model during iterative learning process, meaning that RegHD
predicted value will be closer to the actual output. Figure 3b
also shows RegHD regression for more complex tasks. As
results indicate, RegHD has a limitation on learning a suitable
regression model on a sophisticated dataset. In the following,
we discuss the limitations of RegHD single-model.
Hypervector Capacity: Depending on the hypervector di-
mensionality, a single hypervector has limited capacity to
store information. The accumulation of the encoded inputs
during model training can result in the saturation of the model
hypervector. In fact, the input with a more common pattern
will dominate the model, results in losing the information of
several less frequent inputs.

Let us assume that ~M is the addition of P hypervectors
(i.e., P distinct patterns), ~M = ~S1 + · · · + ~SP . To check, if
vector ~M store the pattern of all input data, we perform the
following dot product:

δ( ~M, ~Q) = δ( ~Sλ, ~Q) +
P∑

i=1,i6=λ

δ( ~Si, ~Q) (3)

If ~Hλ = ~Q, thus δ( ~Hλ, ~Q) = D and the noise terms is nearly
zero, as ~S vectors are random vectors with nearly orthogonal
distribution. In order to identify if ~M already stored the ~Q
information, δ( ~M, ~Q)

D > T . For example, using D = 100, 000
and T = 0.5, we can identify P = 10, 000 patterns with
5.7% error. Although, using larger D values can increase the
capacity of ~M, this comes with the cost of more resources.

D. Multi-Model Regression
The limited capacity of ~M hypervector and the simplicity

of the predictions, eliminates RegHD capacity to provide
suitable regression results on complex regression problems.
To address this issue, we RegHD introduce the idea of multi-
model regression. RegHD exploits multiple hypervectors to
store the information of data points with different patterns.
As Figure 2b shows, the main idea behind this approach is to
cluster input data and create a separate model for each input
cluster. During inference, RegHD first checks to which of the
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cluster centers a data point is assigned to, then accordingly
uses the selected model to perform the regression task. In other
words, RegHD multi-model learning performs clustering and
regression at the same time. This enables RegHD to have a
more accurate model of a learned function.

Initial Model generation: Let us assume RegHD with
k models. RegHD stores two sets of hypervectors: clus-
ter hypervectors ({~C1, ~C2, · · · , ~Ck}) and model hypervectors
({ ~M1, ~M2, · · · , ~Mk}). The cluster hypervectors are initial-
ized to random binary values, while model hypervectors are
initialized as zero hypervectors. For a pair of (x, y), RegHD
encodes inputs into high-dimensional space, ~S.

Model Update: Figure 4 shows RegHD functionality using
multi regression models. RegHD checks the similarity of ~S
with all cluster hypervectors (•1 ). Each similarity value shows
the confidence that a data point belongs to that cluster. For ith
cluster, the cosine similarity is computed as(•2 ). Next, RegHD
normalizes the similarity values (δ) by passing them through a
normalization block, e.g., softmax. The δ′(S,Ci) indicates the
confidence of each cluster (•3 ). For an encoded hypervector
~S, RegHD predicts the output value using all models and their
confidence value(•4 ): ŷ =

∑k
i=1 δ

′(S, ~Ci) ~Mi. ~S.
The predicted value is the weighted accumulation of all

regression models (•5 ). The weight of each model, δ′(S,Ci),
determines the confidence of each cluster center for having S.
During training, RegHD updates the model based on how far
is this prediction from the actual output value (•6 ):

~Mi ← ~Mi + α(y − ŷ︸ ︷︷ ︸
Error

)× ~S (4)

where term ‘y−ŷ’ indicates the error between the actual output
and predicted result and ‘α’ is the learning rate. RegHD also
updates the cluster centers by addining input data to a center
that has the highest cosine similarity. For example, if an input
data has maximum similarity with l center, the cluster center
updates as follows: ~Cl = ~Cl + (1− δl)× ~S.

The term ‘1−δl’ ensures that we do not saturate the cluster
hypervectors with dominant input patterns. If an input data
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Fig. 4. RegHD training and prediction using multi-model.

already exists in the ~Cl, RegHD will update the cluster center
with small weight, as 1 − δl ' 0. This update is equivalent
to clustering input data and ensuring that we only select
suitable model hypervector for cluster update. After updating
the cluster and regression models, RegHD continues with an
iterative update over training data points until the quality
of regression stabilizes during the last few iterations. This
iterative process ensures that cluster centers well-represent
training data, and each prediction is assigned to a proper model
based on the input distribution.

Prediction: The first step encodes the input to produce
a query hypervector ~S. RegHD computes the similarity of
encoded input with all cluster centers; then, it normalizes
the similarity values to find each model’s confidence. Finally,
RegHD performs the prediction.

III. RegHD EFFICIENT IMPLEMENTATION

As a light-weight learning, RegHD needs to enable real-time
and reliable learning on today’s IoT systems. RegHD requires
to have the robustness to noise and failure on embedded
devices which are working based on unreliable battery sources.
More importantly, RegHD requires hardware efficiency as its
intended to run on embedded devices with limited resources.
In terms of robustness, RegHD has redundant representation,
which provides inherent robustness to possible noise in the
hardware. In RegHD, hypervectors store information across
all their components so that no component is more responsible
for storing any piece of information than another. This makes
a hypervector robust against errors in its components.

However, the algorithm explained in Section II, are not
efficient enough to process on embedded processors with
sub 1-watt power consumption. RegHD computation involves
mainly similarity search on cluster hypervectors and dot prod-
uct operations over model hypervector. All these operations are
happening over hypervectors with integer values. Therefore,
RegHD requires to sue costly cosine similarity and high-
precision dot product operations. In this section, we propose
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a framework for binarizing the computation of RegHD with
no or minimal impact on accuracy.

A. Quantized Clustering
One of the main computational cost of RegHD is the sim-

ilarity search of encoded data with all cluster centers. Using
cluster centers with integer representation, RegHD requires
several high-precision arithmetic operations (multiplication
and addition) to compute cosine similarity. Figure 5a shows an
overview of the proposed framework. Our framework exploits
cluster hypervectors with binary representation and uses effi-
cient Hamming distance for similarity search. However, naive
binarization of the cluster hypervectors results in a significant
loss in the regression accuracy, as binary vectors do not have
the capability for the model update.

RegHD stores two copy of the cluster hypervectors: integer
(~C) and binary (~Cb) versions. Similarly, our encoding module
maps each input data into hypervectors with integer ( ~S)
and binary ( ~Sb) representation. During regression, RegHD
checks the similarity of the binary data with the binary
clusters (δ(~Cb, ~S)). This similarity performs using efficient
Hamming distance similarity. Depending on the similarity
results, RegHD updates the model and cluster hypervectors.
This update happens over integer clusters using integer input,
as shown here: ~Cl = ~Cl + (1− δ(~Cbl , ~Sb))× ~S.

Update on integer vector ensures that the cluster has enough
capacity (defined in Section II-C) to store information of mul-
tiple patterns. The binary search and integer update continue
over all training data points (or batch of data). Next, RegHD
updates binary clusters by quantizing the integer model. This
quantization assigns each element of cluster hypervector to 0
or 1 by exploiting a single comparison operation. For the next
iterations, RegHD uses an updated binary cluster for the rest
of the regression task.

Figure 6 compares the quality of regression in RegHD using
binary and integer cluster centers. The results are also com-
pared to RegHD using naive binarization. Our evaluation in-
dicates that our framework enables RegHD to provide similar
regression quality as RegHD with integer model. This quality
is significantly higher than RegHD using naive binarization.
This is because our framework teaches RegHD to adapt itself
to work with the binarization constraint during the iterative
learning process. It should be noted that our framework comes
with a slight increase in the number of training iterations.
However, this overhead is negligible as RegHD speeds up each
training iteration by eliminating costly cosine similarity.

B. Quantized Prediction
RegHD can exploit a similar framework to binarize model

hypervectors. Figure 5b shows an overview of our framework.
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Fig. 6. RegHD regression w/wo cluster quantization.

This binarization aims to simplify the dot product operation
between encoded data and the model to Hamming computing.
To this end, RegHD stores two copies of the model: integer
model ( ~M) and binary model ( ~Mb). RegHD has three choices
for reducing the complexity of dot product operation.
• Binary Query - Binary Model: RegHD predicts the re-

gression output by performing bitwise AND operation binary
query and binary model hypervectors: ŷ =

∑k
i=1 δ

′ ~Mb
i .
~Qb

• Binary Query - Integer Model: RegHD predicts the
regression output by performing dot product operation be-
tween binary query and integer model hypervectors: ŷ =∑k
i=1 δ

′ ~Mi. ~Qb. In this configuration, the dot product is
multiply-free and efficient as the query vector is binary.

• Integer Query - Binary Model: RegHD predicts the regres-
sion output by performing dot product operation between
integer query and binary model: ŷ =

∑k
i=1 δ

′ ~Mb
i .
~Q. This

configuration also supports fast and efficient dot product.
Regardless of using any of the above predictions, during

training, RegHD updates the integer model ( ~Mi ← ~Mi +
α(y−ŷ)× ~S). This is because the precision of the model update
has an important impact on RegHD convergence and the final
quality of the model. After going through all training data (or a
batch), RegHD binarizes the model (if necessary) and use the
new binary model for the next iteration of training. Depending
on the prediction method, RegHD provides different accuracy
and efficiency trade-offs.

IV. EVALUATION

A. Experimental Setup
We implement RegHD using both software and hardware

support. In software, we verified RegHD functionality using
C++ implementation. In hardware, We implement RegHD
training and testing on two embedded platforms: Kintex-7
FPGA and ARM Cortex A53 CPU. For FPGA, we design
the RegHD functionality using Verilog and synthesize it using
Xilinx Vivado Design Suite [23]. For CPU, the RegHD code
has been written in C++ and optimized for performance. The
code has been implemented on Raspberry Pi (RPi) 3B+. We
evaluate RegHD accuracy and efficiency on popular regression
datasets, including diabetes [24], Boston housing [25], NASA
airfoil self-noise [26], wine quality prediction [27], Facebook
performance metrics [28], combined cycle power plant (CCPP)
prediction [29], and forest fire prediction [30].

B. RegHD Quality
State-of-the-art: We compare RegHD regression quality

with state-of-the-art regression algorithms, including Deep
Neural Network (DNN), Support Vector Regression (SVR),
and Decision Tree. The DNN models are trained with Ten-
sorflow [31], and we exploited the Scikit-learn library [32]
for the other algorithms. Our evaluation shows that RegHD



TABLE I
COMPARING RegHD QUALITY OF REGRESSION (MEAN SQUARE ERROR)

WITH THE STATE-OF-THE-ART REGRESSION ALGORITHMS.
diabetes boston airfoil wine facebook CCPP forest

DNN 3385.1 14.6 24.2 0.51 11890.7 19.9 701.2
Decision Tree 5508.7 32.3 19.0 0.59 11740.9 22.8 1437.5

SVR 4756.2 13.5 16.7 0.64 13821.5 24.3 1104.7

Baseline-HD [18] 7921.3 62.3 48.9 73.10 18340.0 51.3 1775.2

RegHD-1 5658.8 23.0 20.4 0.61 12933.1 23.6 906.9
RegHD-2 4981.7 20.5 18.2 0.54 11798.6 21.2 807.8
RegHD-8 4336.6 17.5 17.0 0.53 11344.8 20.2 762.1

RegHD-32 3982.2 15.8 16.0 0.53 11117.9 20.0 746.9

Binary Data

Binary Model
Binary Data

Integer Model

Integer Data

Binary Model
Binary Cluster

Baseline

All Integer

85

90

95

100

N
o

rm
a
li

z
e
d

 
Q

u
a
li

ty

Fig. 7. RegHD quality in different configurations.

provides comparable quality of regression to other algorithms.
Table I compares RegHD quality of regression with state-of-
the-art HD-based algorithms [18], called Baseline-HD. The
baseline-HD [18] emulates the regression task by exploiting
HD classification with several hypervectors. Each hypervec-
tor represents a range of output. Depending on the search
result, RegHD decides to select an output with the highest
similarity as a prediction result. Our evaluation shows that the
baseline-HD provides a significantly low quality of regression,
especially on high-precision applications. In contrast, RegHD
natively supports regression using iterative training, enabling
us to work with a minimal number of hypervectors. Table I
also lists the impact of the number of vectors in RegHD
classification accuracy. RegHD with more number models
improves the regression accuracy. For example, RegHD with
32-models (RegHD-32) provides, on average, 21.3% higher
quality of regression. This accuracy improvement comes at
the cost of lower computation efficiency.

Configurations: Figure 7 shows RegHD normalized quality
of regression using quantized clustering and quantized model.
Our evaluation indicates that RegHD achieves maximum qual-
ity using a quantized cluster (only 0.3% lower). This is because
the cluster model does not have a direct impact on the final
prediction result. In contrast, model quantization can add
a large amount of error to the regression result. Using a
binary query - binary model results in a maximum quality
loss, as model prediction is really approximated. RegHD with
integer input - binary model also provides a relatively low
quality of regression, on average, 5.2% lower quality than full
precision RegHD. However, RegHD using binary query and
integer model provides very similar regression result as the
full precision RegHD (only 1.5% lower). This suggests that
binarizing query has a lower impact on regression quality as
compared to model binarization.

C. RegHD Efficiency

State-of-the-art: Figure 8 compares RegHD efficiency
with DNN and the baseline HD during training and inference
phase on Xilinx Kintex-7 FPGA. All results are reported
RegHD using a binary cluster. For DNN, we used DNNWeaver
V2.0 [33] for inference and FPDeep [34] for training im-
plementation on a single FPGA device. FPGA implemen-
tations are optimized to maximize performance by utilizing
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the resources. Our evaluation shows that RegHD provides
higher efficiency than DNN in both training and inference
phases. During training, RegHD efficiency comes from (i)
reducing the number of training iterations and (ii) improving
the efficiency of a single training iteration by eliminating
costly gradient operations required by DNN. During inference,
RegHD efficiency is becoming closer to DNN, as DNN already
supports fast single-pass inference with no costly iteration. Our
evaluation shows that RegHD using 8-models provides 5.6×
(2.9×) faster and 12.3× (4.2×) higher energy efficiency as
compared to DNN during training (inference). As Figure 8
shows, RegHD efficiency also depends on the number of
hypervectors used for cluster and regression model. Increasing
the number of hypervectors linearly increases RegHD compu-
tation cost. RegHD with 8-models (2-models) provides 2.8×
and 2.1× (4.9× and 8.0×) faster and more energy efficient
training as compared to RegHD with 32-models.

Configurations: Figure 9 compares the RegHD efficiency
using different cluster and model quantization. Our evaluation
indicates that clustering is taking a high cost of RegHD entire
computation. Therefore, cluster quantization provides, on av-
erage, 1.9× faster and 2.1× higher energy efficiency than the
baseline. Model quantization can also improve computation
efficiency. As we predicted, RegHD with a binary query and
binary model has maximum efficiency. Model binarization
or query binarization are also providing high computation
efficiency. Since RegHD with binary query has a higher quality
of regression, we prefer this configuration. Our evaluation
shows that RegHD with a binary query and integer model
(binary model) provides, on average, 1.4× and 1.5× (1.6× and
1.8×) faster and more energy efficient training as compared to
the baseline. Figure 9 also shows RegHD efficiency during the
inference task. Quantized clusters and models have a higher
impact on RegHD inference efficiency. This is because RegHD
in the inference phase does not use cluster updates, which
cannot be quantized anyway. RegHD using quantized clusters
can achieve 2.0× faster and 2.3× higher energy efficiency at
inference. Similarly, RegHD using model quantization (binary
query, binary model) provides 1.5× faster and 1.6× more
energy efficiency than the baseline.

D. RegHD and Dimensionality
Table II reports RegHD regression quality loss and effi-

ciency when the size of hypervector increases from D = 0.5k
to 4k. Our evaluation shows that RegHD has high robustness
to reduce dimensionality. For example, RegHD using D = 3k
dimension provides a similar quality of regression as full
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Fig. 9. RegHD efficiency in different configurations.

TABLE II
RegHD QUALITY LOSS AND EFFICIENCY IN DIMENSIONALITY

Dimensions 4k 3k 2k 1k 0.5k

Quality Loss 0% 0.1% 0.3% 0.9% 2.4%

Training Speedup 1× 1.18× 1.71× 3.09× 5.20×
Efficiency 1× 1.26× 1.86× 3.53× 6.38×

Inference Speedup 1× 1.19× 1.78× 3.67× 7.13×
Efficiency 1× 1.30× 1.90× 3.81× 7.62×

dimensionality. Further reducing dimensionality degrades the
regression quality while improving the learning efficiency.
Dimensionality reduction has a higher impact on inference
efficiency. During training, reducing dimensionality results in
increasing the number of required iterations. This reduces
the linear improvement in energy consumption. For example,
RegHD using D = 1k provides 3.09× and 3.53× (3.67×
and 3.81×) faster and higher energy efficiency during training
(inference), while provides 0.9% lower regression accuracy.

V. RELATED WORK

Since a computational neuroscientist P. Kanerva introduced
the field of hyperdimensional computing [14], prior research
have applied the idea into diverse cognitive tasks, such
as latent semantic analysis, language recognition, gesture
recognition, prediction from multimodal sensor fusion, and
robotics [18], [35], [36]. Several prior works explored the
capability of HD computing to enable single-pass training.
For example, the work in [35] proposed a text classification
algorithm based on random indexing as a scalable alternative
to latent semantic analysis. Work in [18] used HD classifica-
tion to mimic the regression function to predict the speed of a
robot. However, this approach is a discrete (inaccurate) regres-
sion method that requires hundreds of class hypervectors, thus
significantly inefficient in hardware. However, the application
of existing HD algorithms is mainly in classification. RegHD
is the firs algorithm that natively supports regression in high-
dimensional space. RegHD exploits robustness and efficiency
as key advantages that HD-based systems need to provide.

Prior work introduced iterative learning in HD classification.
Work in [37] and [38] introduced iterative frameworks for
quantizing and sparsifying the HD model during the training
phase. Several recent works have presented the hardware
accelerator for HD computing training and inference. This
includes acceleration on the existing FPGAs [39]–[42] or de-
signing new ASIC or processing in-memory architectures [16],
[43]. Our approach is orthogonal to these hardware accelera-
tors, as we can use these frameworks to sparsify the regression
model and use similar platforms for RegHD acceleration.

VI. CONCLUSION

We propose RegHD, to the best of our knowledge, the first
regression algorithm based on hyperdimensional computing.
RegHD performs regression after mapping data into high-
dimensional space using similarity preserving encoding. Due
to the non-linearity of the encoder, RegHD learns a regression

model efficiently and linearly. During prediction, RegHD
computes the output value by the weighted accumulation of
all regression models, considering the model confidence ob-
tained during similarity search. To improve RegHD efficiency,
we also proposed a framework that enables RegHD model
quantization while having no impact on the learning accuracy.

ACKNOWLEDGMENT
This work was partially supported by Semiconductor Re-

search Corporation (SRC) Task No. 2988.001 and Department
of the Navy, Office of Naval Research, grant #N00014-21-1-
2225.

REFERENCES

[1] X. Wang et al., “In-edge ai: Intelligentizing mobile edge computing, caching and
communication by federated learning,” arXiv preprint arXiv:1809.07857, 2018.

[2] R. Marculescu et al., “Edge ai: Systems design and ml for iot data analytics,” in KDD,
pp. 3565–3566, 2020.

[3] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” in
ISCA, pp. 1–12, IEEE, 2017.

[4] I. Magaki et al., “Asic clouds: Specializing the datacenter,” in ISCA, pp. 178–190,
IEEE, 2016.

[5] R. Andri et al., “Yodann: An architecture for ultralow power binary-weight cnn
acceleration,” TCAD, vol. 37, no. 1, pp. 48–60, 2017.

[6] S. Angizi et al., “Accelerating deep neural networks in processing-in-memory plat-
forms: Analog or digital approach?,” in IVLSI, pp. 197–202, IEEE, 2019.

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low
precision multiplications,” arXiv preprint arXiv:1412.7024, 2014.

[8] S. Han et al., “Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[9] Z. He et al., “Sparse bd-net: a multiplication-less dnn with sparse binarized depth-wise
separable convolution,” JETC, vol. 16, no. 2, pp. 1–24, 2020.

[10] R. P. Bastos et al., “Effects of transient faults in integrated circuits,” in Springer, pp. 1–
16, Springer, 2020.

[11] W. Zhang et al., “Neuro-inspired computing chips,” Nature Electronics, vol. 3, no. 7,
pp. 371–382, 2020.

[12] J. Liu et al., “Self-repairing learning rule for spiking astrocyte-neuron networks,” in
ICONIP, pp. 384–392, Springer, 2017.

[13] C. S. Thakur and thers, “Large-scale neuromorphic spiking array processors: A quest
to mimic the brain,” Frontiers in neuroscience, vol. 12, p. 891, 2018.

[14] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive Computa-
tion, vol. 1, no. 2, pp. 139–159, 2009.

[15] A. Calimera et al., “The human brain project and neuromorphic computing,” Func-
tional neurology, vol. 28, no. 3, p. 191, 2013.

[16] M. Imani et al., “Exploring hyperdimensional associative memory,” in HPCA, pp. 445–
456, IEEE, 2017.

[17] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube fets and resistive
ram: Hyperdimensional computing case study,” in ISSCC, pp. 492–494, IEEE, 2018.

[18] A. Mitrokhin et al., “Learning sensorimotor control with neuromorphic sensors:
Toward hyperdimensional active perception,” Science Robotics, 2019.

[19] M. Imani et al., “A framework for collaborative learning in secure high-dimensional
space,” in CLOUD, pp. 435–446, IEEE, 2019.

[20] L. Ge and K. K. Parhi, “Classification using hyperdimensional computing: A review,”
IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–47, 2020.

[21] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired hyper-
dimensional computing,” in ISLPED, pp. 64–69, ACM, 2016.

[22] M. Imani et al., “Searchd: A memory-centric hyperdimensional computing with
stochastic training,” TCAD, 2019.

[23] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[24] “Diabetes patient records.” https://archive.ics.uci.edu/ml/datasets/diabetes.
[25] “Boston Housing Dataset.” http://lib.stat.cmu.edu/datasets/boston.
[26] R. L. Gonzalez, Neural networks for variational problems in engineering. PhD thesis,

Universitat Politècnica de Catalunya (UPC), 2009.
[27] P. Cortez et al., “Modeling wine preferences by data mining from physicochemical

properties,” Decision Support Systems, vol. 47, no. 4, pp. 547–553, 2009.
[28] S. Moro et al., “Predicting social media performance metrics and evaluation of the

impact on brand building: A data mining approach,” JBR, 2016.
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