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Abstract—Today’s applications generate a large amount of data
where the majority of the data are not associated with any labels.
Clustering methods are the most commonly used algorithms
for data analysis, especially in healthcare. However, running
clustering algorithms on embedded devices is significantly slow
as the computation involves a large amount of complex pairwise
similarity measurements. In this paper, we proposed FebHD,
an adaptive framework for efficient and fully binary clustering
in high-dimensional space. Instead of using complex similarity
metrics, e.g., Euclidean distance, FebHD introduces a non-
linear encoder to map data points into sparse high-dimensional
space. FebHD encoder simplifies the similarity search, the most
costly and frequent clustering operation, to Hamming distance,
which can be accelerated in today’s hardware. FebHD performs
clustering by assigning each data point to a set of initialized
centers. It then updates the centers adaptively based on: (i) data
points assigned to each cluster, and (ii) the confidence of the
model on the clustering prediction. This adaptive update enables
FebHD to provide a high quality of clustering with very few
learning iterations. We also propose an end-to-end hardware
accelerator that parallelizes the entire FebHD computation by
exploiting FPGA bit-level granularity. Our evaluation shows
that FebHD provides comparable accuracy to state-of-the-art
clustering algorithms, while providing 6.2× and 9.1× (4.7× and
5.8×) faster and higher energy efficiency when running on the
same FPGA (GPU) platform.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), sensory
and embedded devices generate massive data streams and
demand services that pose substantial technical challenges
due to limited device resources. Today’s IoT applications
analyze raw data by running machine learning algorithms [1].
Particularly in healthcare, the majority of data are not associated
with any labels. This makes clustering algorithms the most
popular learning methods for data analysis. Clustering algo-
rithms are unsupervised and have applications in many fields,
including machine learning, pattern recognition, image analysis,
information retrieval, bioinformatics, data compression, and
computer graphics [2]. These algorithms are used to group a
set of objects into different classes so that objects within the
same class are similar to each other.

Although there are several efforts on the acceleration of deep
neural networks [3], there are much less focuses on real-time
unsupervised learning. The process of clustering data involves
heavy computations as most algorithms need to calculate
pairwise distances between all the points in the dataset [4].
To give non-linearity to the clustering task, most existing
algorithms use complex distance metrics, e.g., Euclidean

distance, and use the iterative process for clustering. However,
computing these distance metrics is extremely expensive on
today’s computers. In addition, the clustering algorithms require
many costly iterations to converge to a reasonable solution.

To achieve real-time performance with high energy efficiency
and robustness, we rethink not only how we accelerate cluster-
ing algorithms in hardware, but also to redesign the algorithms
using strategies that more closely model the human brain. We
exploit Hyperdimensional computing (HDC) [5], [6] as an
alternative computing paradigm that emerged from theoretical
neuroscience. HDC is motivated by a biological observation
that the human brain operates on a robust high-dimensional
representation of data originated from the large size of brain
circuits [5], [7]. It thereby models human memory using points
of a high-dimensional space. HDC is well suited to address
learning tasks for healthcare systems as: (i) HDC models are
computationally efficient and highly parallel at heart to train and
amenable to hardware level optimization [8], [9], [10], (ii) HDC
models offer an intuitive and human-interpretable model [11],
[12], (iii) it offers a complete computational paradigm that can
be applied to cognitive as well as learning problems [13], [14],
[15], [16], [17], (iv) it provides strong robustness to noise –
a key strength for IoT systems, and (v) it supports low-cost
security and privacy [6], [18].

Although prior work tried to use HDC for efficient clus-
tering [19], the lack of proper encoding and learning process
results in low quality of learning even using a complex and
costly cosine similarity metric. In this paper, we proposed
FebHD, a novel framework for efficient and binary clustering in
high-dimensional space. To the best of our knowledge, FebHD
is the first fully binary HDC-based clustering approach that
ensures robustness along with the same quality as the state-of-
the-art clustering algorithms. The main contributions of this
paper are listed in the following:

• FebHD introduces a novel encoding approach that maps data
points into high-dimensional space while considering non-
linear interactions that potentially occur between features
of heterogeneous sensors. FebHD learning is performed by
linear combinations of hypervectors that are non-linearly
mapped to high-dimensional space. Our framework revisit
clustering algorithms to ensure that the clustering algorithm is
performing entirely over binary vectors. Particularly, FebHD
simplifies the distance similarity, the most frequent operation
used in clustering algorithms, to efficient and hardware-
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Fig. 1. Overview of FebHD clustering framework

friendly Hamming distance metric.
• We exploit HDC model transparency to enable FebHD to

provide confidence about each prediction. FebHD uses this
confidence level to adaptively update the cluster centers and
provide fast convergence.

• We propose an end-to-end architecture supporting all es-
sential FebHD operations on FPGA. Our implementation
exploits the bit-level granularity of FPGAs to parallelize the
key FebHD kernels such as Hamming distance computing
and cluster updates using efficient lookup tables resources.

We evaluate FebHD efficiency on a wide range of clustering
datasets. Our evaluation shows that FebHD provides compa-
rable quality of clustering to the state-of-the-art clustering
algorithms while providing 6.2× and 9.1× (4.7× and 5.8×)
faster and higher energy efficiency when running on the same
FPGA (GPU) platform. Our code is available open-source1.

II. FEBHD: CLUSTERING IN BINARY SPACE

Figure 1 shows the overview of the FebHD framework.
FebHD first maps data points into high-dimensional space. This
encoding module needs to consider the relationship between
different features and map data points into non-linear space
where the similarity could be preserved using the Hamming
metric. FebHD performs clustering over the encoded data. It
generates k binary random hypervector representing k cluster
centers. Then, it compares the Hamming distance similarity of
each encoded data point with the cluster center. Each data point
gets the label of a center that has the highest similarity with it.
By going through the entire dataset, or a batch of data, FebHD
assigns a label to each data point. FebHD updates the cluster
centers depending on the confidence of the model on each
prediction. The cluster update makes the centers to get non-
binary elements. This eliminates using an efficient Hamming
distance metric as a distance measurement in the next iterations.
To address this, FebHD binarizes the new centers while still
storing a copy of non-binary centers. The new binary centers
are used for the distance similarity computation in order to
assign a label to each data point. Depending on the new labels,
FebHD updates the non-binary model. This iterative training
continues until the number of labels does not change during a
few iterations.

A. Non-Linear Encoding
There are multiple encoding methods proposed in litera-

ture [20], [21]. Although these methods have shown excellent
classification accuracy for their application-specific problems,

1https://gitlab.com/biaslab/hd-clustering

all existing encoding methods linearly combine the hypervec-
tors corresponding to each feature, resulting in sub-optimal
learning results. To obtain the most informative hypervectors,
the HDC encoding should consider the non-linear interactions
between the feature values with different weights.

In this context, we exploit the encoding method, proposed
in [22], which exploits the kernel trick [23], [24] to map data
points into the high-dimensional space. The underlying idea
of the kernel trick is that data, which is not linearly separable
in original dimensions, might be linearly separable in higher
dimensions. Figure 1b shows our encoding procedure. Let us
consider an encoding function that maps a feature vector ~F =

{ f1, f2, . . . , fn}, with n features ( fi ∈N) to a hypervector ~Hb =
{h1, h2, . . . , hD} with D dimensions (hb

i ∈ {0,1}). We generate
each dimension of the encoded data by calculating a dot product
of the feature vector with a randomly generated vector as
hi = cos(~Bi · ~F + bi)× sin(~Bi · ~F), where Bi is the randomly
generated vector with a Gaussian distribution (mean µ = 0 and
standard deviation σ = 1) with the same dimensionality to that
of the feature vector. The random vectors {~B1,~B2, · · · ,~BD} can
be generated once offline and then can be used for the rest
of the clustering task. After this step, each element hi of a
hypervector ~H has a non-binary value. In the HDC, binary
(bipolar) hypervectors are often used for computation efficiency.
Thus, our encoder has an option of binarizing the encoded
hypervector with a sign function (~Hb = sign(~H)).

B. Initial Center Generation
FebHD starts clustering from initial centers. The clustering

starts by selecting randomly k encoded data points and using
them as initial cluster centroids {~Hi1 ,

~Hi2 , . . . ,
~Hik}, where i j ∼

U(1..n). Since these vectors are chosen from input data, each
cluster will have at least one element assigned to it, which
prevents empty cluster partitions.

C. Similarity Search
The next step of FebHD clustering is to assign each

encoded data point to one of the cluster centers (•B ). This
is equivalent to unsupervised labeling of encoded data based
on their similarity to cluster centers. Clustering algorithms
are using different metrics for similarity search depending on
the goal of clustering and representation of centers/data point.
For example, K-means clustering often uses costly Euclidean
distance as a similarity metric [25], [26]. Thanks to FebHD
encoding (explained in Section II-A), the similarity metric can
be simplified to cosine or Hamming distance. Prior work [19]
showed that to get high quality of clustering, the values and
centers need to represent using non-binary (e.g., integer or
floating-point), requiring expensive cosine metric for distance
measurement. The main goal of our proposed FebHD is to
simplify the value’s representation to binary and distance
similarity metric to Hamming distance, with no impact on
the clustering quality.

As Figure 1b shows, FebHD encoding module generates
both non-binary (~H) and binary (~Hb) data. FebHD also stores
two copies of the centers: (i) an original version of centers with
non-binary representations (~Ci), and (ii) a binarized version of
the cluster centers (~Cb

i ). During the clustering, FebHD checks

https://gitlab.com/biaslab/hd-clustering
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Fig. 2. FebHD framework supporting adaptive clustering.

the Hamming similarity of the binary data with the binary
cluster center (δi = δ (~Hb, ~Cb

i )). The output of this search is a
center that has the highest similarity with a data point (•C ):

We use the same distance similarity measurement to assign
all train data to the closest centers. FebHD also exploits HDC
transparent model to give confidence level for each data point
during the similarity search. This confidence rate specifies how
close a data point is assigned to a center (•D ). For each data
point, confidence defines as:

α =
δmax−µ(δ j)

σ(δ j)
1≤ j ≤ k

Where δmax is a cluster with the highest similarity with data,
and µ(δ j) and σ(δ j) show the average Hamming distance and
standard deviation of the binary encoded data (~Hb) with other
centers.

D. Adaptive Center Update
In the first iteration, FebHD provides a low quality of

clustering as the initial cluster centers are often not a good
representation of data. To enhance the clustering quality, we
update the centers based on the new data point assigned to
each center (•E ). Existing clustering approaches, e.g., K-means,
compute the new centers by averaging over all training data
point corresponding to each center. However, all data points
assigned to a cluster do not have the same confidence about the
correctness of their label (assigned center). This naive center
update increases the number of clustering iterations, as we
require many iterations to learn a specific pattern. In contrast,
FebHD proposes a method to find the new cluster centers based
on the confidence that each data point has about the prediction.

FebHD Cluster Update: Each cluster center is updated
using all data points assigned to the center as well as their
corresponding confidence level. After assigning each encoding
hypervector ~H of inputs belonging to center/label l, the center
hypervector ~Cl can be obtained by bundling (adding) all ~Hs.
Assuming there are J inputs having label l, the cluster update
happens using one of the following options:
• Baseline Non-Adaptive Update: ~Cl ← ~Cl +∑

J
j
~H j

• Adaptive Non-binary Update: ~Cl ← ~Cl +∑
J
j α j ~H j

• Adaptive Binary Update: ~Cl ← ~Cl +∑
J
j α j

~Hb
j

Where ~Hi and ~Hb
i are non-binary and binary query data,

respectively. All cluster updates are performed over the non-
binary copy of the centers. Among the aforementioned methods,
the adaptive cluster updates consider confidences value during

the model update. The adaptive non-binary method uses
an encoded query, while the adaptive binary update uses a
binarized query for efficiency and hardware-friendly cluster
update.

FebHD Cluster Binarization: The algorithm 1 describes
FebHD clustering process using adaptive non-binary cluster
update. Our algorithm takes binary and non-binary encoded
hypervectors as inputs and returns each input to one of the
k cluster centers. FebHD updates the binary centers based
on the newly updated non-binary centers. This update aims
to generate new binary centers that can better represent the
cluster centers based on the distribution of the data. FebHD
updates the binary cluster by simply binarizing every element
of the non-binary centers. When using bipolar representation
(hypervectors in {−1,+1}D), this binarization is a simple
sign() function that assigns negative and positive elements
to 0 and 1, respectively. In FebHD with binary representation,
which is desired for hardware, we apply a majority function
on non-binarized class hypervectors (•F ). Given a center
hypervector, ~Cl = 〈cD, · · · ,c1〉, the majority function is defined
as follows:

MAJ(~Cl , ni) = 〈cb
D, · · · ,cb

1〉 where cb
j =

{
0, if c j < ni/2
1, otherwise.

Using the majority function, the final hypervector for each data
point is encoded by ~Cb =MAJ(~Cl ,ni/2), and ~Cb ∈ {0,1}D, and
ni is a counter corresponding to each center to keep tracks of
the number of data points assign to the ith center.

E. Iterative Learning

FebHD performs an iterative process for clustering. In
each iteration, FebHD computes binary data similarity with
the binary centers and then updates the non-binary centers
depending on the search results and the search confidence.
Then, we binarize the updated centers in order to find new
binary centers. After every iteration, FebHD checks the changes
in the cluster centers in order to decide the convergences.
FebHD is converged when all binary cluster centers have less
than β% changes in their elements during a few consecutive
iterations, where β is a convergence threshold ranging from
0% to 5%. Our solution enables each clustering iteration to go
over the entire or a batch of data. A large batch size provides a
higher quality of clustering, as the centers can be updated after
looking at the entire data points. In contrast, a small batch
size speeds up FebHD computation by reducing the number
of iterations. In section IV-E, we explore the impact of batch
size on FebHD efficiency and quality of clustering.

III. FEBHD FPGA ACCELERATION

FebHD can be implemented in different platforms such as
CPU, GPU, or FPGA. Due to many bitwise operations involved
in FebHD, FPGA is a suitable candidate for hardware acceler-
ation. Figure 3 shows details of our FPGA implementation.
A. Encoding

The encoding happens by multiplying the input data with a
pre-generated projection matrix. To provide high computation
efficiency, we use a binarized projection matrix that simplifies



Algorithm 1 FebHD clustering process
1: function FEBHD(~H, ~Hb,k)
2: ~Ci← Random{~H1, . . . , ~Hn} . Compute initial centers
3: ~Cb

i ← sign(~Ci) . Binary centers
4: for it = 1 to maxiter do
5: for i = 1 to n do
6: δ j← δ (~Cb

j , ~H
b
i ) . For 1≤ j ≤ k

7: δmax← max
1≤ j≤K

δ j

8: αi← (δmax−µ(δ j))/σ(δ j)
9: ~Cδmax ← ~Cδmax +αi~Hi

10: ~Cb
δmax
← sign(~Cδmax) . Update model

11: end for
12: if No Change on Centers? then . Converge check
13: return
14: end if
15: end for
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Fig. 3. FebHD FPGA implementation.

the encoding task to the addition and subtraction of different
input features. As Figure 3a shows, our implementation reads
m features of original data from DRAM. Due to the limited
bandwidth of off-chip DRAM, the m is usually a portion of
the total number of input features. Similarly, we pre-stores all
binary base hypervectors {~B1, · · · ,~BD} in the BRAM block.
Depending on the value of each base hypervector, our design
adds or subtracts the m features. The encoding computation is
performed using FPGA Look-Up Tables (LUTs) resources. In
the next cycle, FPGA reads the next m features and encodes
them based on the base values in those new dimensions.
Depending on the number of features or dimensionality of
the encoded data, the throughput of our implementation can
be bounded by DRAM bandwidth or FPGA LUT resources.
B. Associative Search

Our implementation performs the similarity search using
the Hamming distance metric. As shown in Figure 3b, this
functionality can be implemented using an XOR array that
computes the difference of encoded data with binary cluster
centers. Our implementation accumulates the XOR results over
D dimensions in order to find a Hamming distance of data with
each center. Finally, we compute the confidence level depending
on all k Hamming distance values; each corresponds to a cluster
center. Thanks to the FebHD similarity metric, the associative
search is implemented using FPGA LUTs in a highly parallel
and efficient way.
C. Cluster update

For cluster update, FebHD keeps two copies of the centers
in BRAM blocks: a non-binary and a binary. In contrast to the

TABLE I
DATASETS

Data Features Clusters Description

DIM 1024 128 16 Gaussian Data in high-dimension [27]
A3 7500 2 50 Low-dimensional distributed data [28]

TETRA 236 16 9 Genetic tetragonula bees [29]
MNIST 70000 784 10 Handwritten digit recognition [30]

VERONICA 207 586 2 Genetic AFLP of Veronica plants [31]
UCIHAR 10299 561 6 Human Activity Recognition [32]

SYNTHET I 1000 100 25 Synthetic Data
SYNTHET II 100000 100 25 Synthetic Data

K-means LSH (Cosine) HD-Cluster (Cosine) LSH (Hamming)

HD-Cluster (Hamming) Proposed Design

Q
u

a
li

ty
 o

f 
C

lu
s

te
ri

n
g

 (
%

)

0

20

40

60

80

100

Fig. 4. Comparison of FebHD quality of clustering with other algorithms.

associative search that uses binary centers, the cluster update
performs computation over non-binary centers. As Figure 3c
shows, our design updates the non-binary center by adding the
weighted encoded data (α× ~H) to a center with the highest
Hamming similarity. After each cluster update, the non-binary
cluster is written back to FPGA BRAMs.

Our implementation works in a pipeline to maximize re-
source utilization. When FPGA encodes ith data, the associative
search computes the similarity of the i− 1th data with the
centers. Simultaneously, FPGA updates one of the non-binary
centers based on the similarity search of the i−2th data.

IV. EVALUATION

A. Experimental Setup

We used C++ software implementation for FebHD learning
and verification. We exploit the Scikit-learn library [33] for
implementing of the state-of-the-art clustering approaches. For
hardware support, we fully implemented FebHD in RTL using
Verilog HDL. FebHD is deeply pipelined to run with 200
MHz clock frequency. We verify the timing and functionality
of the FebHD using both synthesis and real implementation
on Xilinx Vivado Design Suite [34]. To estimate the FPGA’s
power consumption, we use the builtin Xilinx Power Estimation
tool in the Vivado Design Suite. The results are reported for
Kintex-7 FPGA. We examine FebHD efficiency and quality of
clustering on several large-scale datasets including actual and
synthetic datasets. Table I lists all popular datasets. To measure
cluster quality, we rely on correct labels of data points and
find out how many points were classified in a cluster that does
not reflect the label associated with the point.

B. FebHD vs. Other Clustering Algorithms

Figure 4a compares FebHD quality of clustering with k-
means and the state-of-the-art clustering approaches in high-
dimensional space: HDC-based clustering (HD-cluster) [19],
and clustering based on Locality Sensitive Hashing (LSH-
cluster) [35]. K-means algorithm is working on original data
and uses Euclidean distance as a similarity metric. Other
approaches map data points into D = 4k dimensions before
performing clustering. For LSH and HD-based clustering, the
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Fig. 5. FebHD computation efficiency as compared to other clustering algorithms.

results are reported using both cosine and Hamming distance
metrics. The cosine metric is used for vectors with integer
precision and Hamming metric for a case of binary vectors.
Our evaluation shows that FebHD provides comparable quality
of clustering to k-means. In addition, as compared to HD-
cluster and LSH-cluster (using cosine metric), FebHD provides
a significantly higher quality of the clustering. Compared
with HD and LSH-based approaches with the Hamming
metric, which have similar computation complexity as FebHD,
our approach provides 24.3% and 33.5% higher quality of
clustering. Even using the cosine metric, HD-cluster and LSH-
cluster provide 7.5% and 8.9% lower quality of clustering as
compared to FebHD. This improvement comes from: (i) a
non-linear encoder that better preserves the similarity of values
in high-dimensional space using hardware-friendly Hamming
distance, and (ii) adaptive iterative learning to update the cluster
centers based on each prediction confidence. The clustering
quality metric used was the Adjusted Mutual Information (AMI)
score, which is often used for this purpose [36].

C. FebHD Efficiency

Figure 5 shows the energy consumption and execution time
of FebHD, LSH, and HD-cluster running on GTX 1080 GPU.
All results are normalized to k-means energy and execution time.
For LSH and HD-cluster, the results are reported when using
both cosine (LSH-cos and HD-cos) and Hamming distance
(LSH-Ham and HD-Ham) as a similarity metric. Our evaluation
shows that FebHD provides significantly higher efficiency as
compared to k-means and other clustering approaches. For
example, FebHD provides, on average, 5.8× higher energy
efficiency and 4.7× speedup as compared to k-means. This
higher efficiency comes from: (i) FebHD capability to perform
the majority of clustering operations using efficient binary
operations. For example, FebHD supports similarity search,
which is the most frequent clustering functionality, using
a hardware-friendly Hamming distance metric. (ii) FebHD
significantly reduces the number of retraining iterations. In
contrast to K-means that train a model in hundreds of iterations,
FebHD get a similar quality of clustering on average in 5×
lower number of iterations.

FebHD also provides higher efficiency than both LSH-
Hamming and HD-Hamming. FebHD uses more complex
encoding than both LSH and HD-based clustering approaches.
As Figure 5 shows, FebHD encoding takes 36% of total
energy, while this portion is less than 20% and 11% in LSH-
Hamming and HD-Hamming. Therefore, in terms of a single
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Fig. 6. FebHD efficiency on GPU vs FPGA.

iteration, FebHD consumes about 1.2× and 1.3× higher energy
than LSH-Hamming and HD-Hamming. However, FebHD
adaptive clustering significantly reduces the number of required
clustering iterations. The number of iterations has a direct
impact on clustering efficiency. Our evaluation shows that
FebHD provides, on average, 1.6× and 1.4× higher energy
efficiency as compared to LSH-Hamming and HD-Hamming,
respectively.

Figure 6 compares FebHD computation efficiency with K-
means, LSH, and HD-cluster running on GTX 1080 GPU and
Xilinx Kintex-7 FPGA. For K-means, we used the implemen-
tation of work in [37], which fully utilizes FPGA to maximize
the throughput. For fairness, we report HD and LSH-based
clustering only for cosine metric (LSH-cos, and HD-cos), when
they provide comparable accuracy to FebHD. Our evaluation
shows that the algorithm using non-binary representation has
minor efficiency improvement on FPGA, especially in terms
of execution time. Implementing the cosine metrics requires
utilizing the limited FPGA DSPs, resulting in low computation
efficiency. In contrast, FebHD can perform the majority of
computation using bitwise operations, e.g., Hamming distance
similarity search, that can effectively parallelize on the FPGA
Look-Up Tables (LUTs). Our evaluation shows that FebHD on
FPGA can provide 6.2× and 9.1× (6.0× and 7.5×) faster and
higher energy efficiency as compared to K-means (HD-cosine)
running on FPGA.
D. FebHD & adaptive cluster Update

We compare FebHD quality of clustering using different
cluster update methods introduced in Section II-D: (i) non-
adaptive update, (ii) adaptive non-binary update, and (iii)
adaptive binary update. Table II compares FebHD in these
configurations from the quality of clustering and the number
of required iterations to converge. Our evaluation shows that
FebHD with non-adaptive update gives all data points the
same chance regardless of their prediction confidence. This
increases the number of requires the number of required
iterations for clustering. The adaptive update improves the
quality and efficiency of the clustering. Although FebHD with



TABLE II
FEBHD EFFICIENCY AND QUALITY IN DIFFERENT CONFIGURATIONS

DIM A3 TETRA MNIST VERONICA UCIHAR

Non-adaptive Quality 94.7% 88.2% 69.9% 44.9% 83.8% 57.7%
Iterations 23.9 82.7 28.3 92.1 15.6 39.3

Adaptive
non-binary

Quality 95.9% 92.3% 73.1% 46.2% 88.0% 62.1%
Iterations 6.2 17.1 7.4 16.3 4.2 15.2

Adaptive
Binary

Quality 94.0% 91.0% 72.7% 47.1% 86.0% 61.7%
Iterations 6.9 26.3 9.2 19.3 6.8 21.1

D=500 D=2000 D=4000

Fig. 7. FebHD visual clustering results in different dimensions.

adaptive binary update improves the efficiency of a single
learning iteration, the binary update requires more iterations
to converge, resulting in lower overall efficiency as compared
to FebHD using adaptive non-binary update.

Figure 7a visualizes FebHD quality of clustering during
different dimensions. The results are reported for FebHD using
three different dimensions. As the figure shows, FebHD quality
of clustering improves by increasing dimensionality.

E. FebHD Batch Size Trade-offs
To speedup FebHD clustering speed, one can decide to

update the cluster centers more frequently without going over
all data points in each epoch. Figure 8 shows the impact of
batch size on FebHD efficiency and quality of clustering. The
results are shown for FebHD using batch size equivalent to
complete or a portion of the dataset. For example, B = 0.4
means that the batch size is half of the number of data points.
The main motivation for reducing the batch size is to quickly
update the model before seeing the entire data points. This
approach enables us to locally update the center for each batch.
Small batch size does not provide the same chance for all data
points to vote and update the model. This approach speeds
up FebHD computing by reducing the number of iterations.
However, it can potentially result in a lower quality of clustering.
Our evaluation shows that FebHD with B = 0.6 (D = 0.2)
achieves 1.2× (1.6×) less number of iterations to converge
while providing 0.8% (2.2%) quality loss.

V. CONCLUSION

In this paper, we proposed FebHD, an adaptive framework
for efficient and fully binary clustering in high-dimensional
space. FebHD performs clustering by assigning each data point
to a set of initialized centers in high-dimensional space. It
then updates the centers adaptively based on: (i) data points
assigned to each cluster, and (ii) the confidence of the model
on each prediction. We also propose an end-to-end hardware
accelerator that parallelizes the entire FebHD computation by
exploiting FPGA bit-level granularity.
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[28] I. Kärkkäinen and P. Fränti, Dynamic local search algorithm for the clustering
problem. University of Joensuu Joensuu, Finland, 2002.

[29] P. Franck et al., “Nest architecture and genetic differentiation in a species complex of
australian stingless bees,” Molecular Ecology, vol. 13, no. 8, pp. 2317–2331, 2004.

[30] Y. LeCun et al., “Gradient-based learning applied to document recognition,” Proceed-
ings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[31] M. M. Martı́nez-Ortega et al., “Species boundaries and phylogeographic patterns in
cryptic taxa inferred from aflp markers: Veronica subgen.,” Systematic Botany.

[32] D. Anguita et al., “Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine,” in AAL, pp. 216–223, Springer, 2012.

[33] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” JMLR, vol. 12,
no. Oct, pp. 2825–2830, 2011.

[34] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[35] X. Shen et al., “Compressed k-means for large-scale clustering,” in AAAI, 2017.
[36] N. X. Vinh et al., “Information theoretic measures for clusterings comparison,” in

ICML, ACM Press, 2009.
[37] Z. He et al., “Bis-km: Enabling any-precision k-means on fpgas,” in FPGA, pp. 233–

243, 2020.


